2022 3rd Int. Conf. on Innovations in Science, Engineering and Technology (ICISET)

26-27 February 2022, Chittagong, Bangladesh

Real Time Hand Gesture Based User Friendly
Human Computer Interaction System

Koushik Roy' and Md. Akiful Hoque Akif?
Department of Electrical, Electronic and Communication Engineering (EECE)
Military Institute of Science & Technology (MIST), Dhaka, Bangladesh

rkoushikroy2@gmail.com';

Abstract—The demand for interface technologies such as hand
gesture detection is growing as virtual reality technology ad-
vances. In our study, we employed the state of art hand-tracking
technology to construct an accurate and robust human-computer
interaction(HCI) system. Our proposed method is cross-platform,
lightweight, and effectively utilizes the resources from both CPU
and GPU to achieve low latency performance. The MediaPipe
framework, which yields a mean precision of 95.7 percent in
palm identification, is used in this research to construct a real-
time human-computer interaction interface that works properly
regardless of difficult conditions such as different skin color,
shape of hand, lighting condition, background, etc. Additionally,
the speed of the proposed system is close to 40 fps acquired in a
computer with weak hardware, which is sufficient for real-time
HCI applications.

Index Terms—Human-Computer Interaction, MediaPipe,
Hand Gesture, Hand Landmarks, Real-Time Execution

I. INTRODUCTION

Human-computer interaction has grown dramatically, and
the subject is always evolving, with new methodologies and
strategies being developed. Hand gesture recognition is one
of the most sophisticated fields in which computer vision and
artificial intelligence have aided not only in improving com-
munication with deaf individuals but also in assisting gesture-
based signaling systems [1], [2]. Sign language recognition [3],
[4], specific signal language recognition for sports [S], human
action identification [6], stance and posture detection [7], [8],
physical activity monitoring [9], and controlling smart home or
assisted living applications using hand gesture recognition [10]
are all sub-domains of hand gesture recognition.

With the onset of Covid-19, hygiene has become a vital
element in our life. Significant emphasis has been put on
maintaining social distance and reduce the touching of various
objects. In such a situation, technology can be introduced
to facilitate various services and the functioning of various
machines without any physical interaction with the surface of
the machine. The hand gesture technique is the perfect solution
in this regard where a person can receive many services
without touching anything.

To collect hand gesture data, several previous studies re-
quired users to wear a data glove. However, the data glove’s
sophisticated sensors are pricey, limiting its use in real life.
The authors employed a Kinect sensor based TOF camera to
capture the depth of the surroundings in their work [11], as

978-1-6654-8397-1/22/$31.00 ©2022 IEEE

mohammadaxif5717@gmail . com?;

well as a specific tape worn across the wrist to find the hand
area. Our method merely requires the use of a regular camera
to collect the observed information of the hand gesture and
does not require the use of a specific tape to find hand areas.

Hands by MediaPipe [12] has a solution for high-resolution
finger and hand recognition. Machine learning is used to
deduce 21 3D landmarks of a hand from a single shot.
By opening up these hand perception skills to the rest of
the research and development community, new applications
and research pathways will arise, inspiring new applications
and study. Their solution delivers real-time performance on
a cell phone, and even scales to several hands, whereas
existing state-of-the-art systems rely mostly on high-equipped
desktop environments for inference. They personally tagged 30
thousand real and original images with 21 three-dimensional
coordinates. They also create a high-quality synthetic hand
model and map it to the corresponding 3D coordinates to
better cover the available hand positions and provide further
supervision on the nature of hand geometry.

Our research is unique in the sense that we are avoiding
the use of any supporting material i.e. hand gloves, sensors,
or other equipment. Moreover, a normal webcam is going
to be used in our proposed method. We are not including
any complex gestures of various sorts which convey different
commands. Rather, we are mapping the common gestures of
our day-to-day life to reduce variation and complexity. Thus
the project will be simpler and user-friendly.

The following sections of this paper are organized as
follows. In Section II, we presented the relevant findings
of related literature. Then the methodology of this research
work has been discussed in Section III. The experimental
results were described in Section IV. Finally, In section V,
the conclusion along with future work has been presented.

II. RELATED WORKS

Agrawal et al. [13] proposed a method that can successfully
replace the usage of a keyboard or mouse to interface with a
computer. The approach employs a Senz3D commercial depth
and RGB camera, which is inexpensive in comparison to other
depth cameras. The suggested technique works by evaluating
3D data in real-time and classifying the number of convexity
defects into gesture classes using a set of classification rules.
This produces real-time results and eliminates the need for any

training data. The proposed approach provides commendable
results while consuming very little processor power.

Xu et al. [14] created a real-time gesture-based HCI system
that recognizes motions with just a single monocular camera,
and they apply it to the HRI application. To learn features and
recognize gestures, the created system uses a CNN classifier.
They also demonstrated the use of the Kalman filter to smooth
the motion of the hand-controlled mouse cursor. Only static
gestures are supported by their designed system.

An efficient and successful approach is presented by Chen
et al. [15] for hand gesture recognition. The background
subtraction method is used to detect the hand region. The
fingers and palm are then divided to identify the fingers.
Following the recognition of the fingers, the hand gesture can
be categorized using a simple rule classifier. The proposed
approach has a 96.6 percent average accuracy.

Specifically for mobile applications, Yin et al. [16] sug-
gested a lightweight method for estimating object and hand
pose estimation. They demonstrated how their methodology
delivers real-time performance, comparable accuracy and 81
percent reduction of the model size compared to state-of-the-
art approaches, justifying the model’s suitability for deploy-
ment on mobile systems.

The user can interact with a computer without using a
marker by moving their hands proposed in this study by Pati-
dar et al. [17]. To follow the movement of the hand, employ
hand segmentation and a color model. The segmentation and
tracking procedure is carried out by employing a color model
to extract or recognize hand motions in order to develop better,
faster, and more accurate real-time systems.

Sziladi et al. [18] introduces mouse cursor control based
on hand movements, as well as the evaluation of mouse
cursor movement, as implemented by The Leap Motion device.
During the mouse cursor movement analysis, the actual move-
ments made by a traditional mouse cursor and the detection
of hand gestures are compared with the participation of test
subjects. Differences in the course of controlling done by a
conventional mouse and hand gesture detection were presented
based on the findings of the mouse cursor movement analysis.

A lightweight hand gesture recognition model was proposed
by Mujahid et al. [19] based on the YOLOv3 and DarkNet-
53 deep learning models. With an accuracy of 97.68 percent,
the created hand gesture recognition system recognises both
real-time objects and gestures from video frames. They also
compared the YOLOvV3 model’s performance and execution
with various methods, and found that their proposed method
produced better results by extracting features from the hand
and recognizing hand gestures, with accuracy, precision, recall,
and F-1 scores of 97.68, 94.88, 98.66, and 96.70 percent,
respectively.

Rautaray et al. [20] creates a hand gesture detection system
for browsing photos in an image browser, and it offers a
useful method for creating a user-friendly interface between
humans and computers through hand gestures. The study
effort proposed here could be very useful in a wide range of

applications where human-computer interaction is a frequent
need.

The gesture detection system proposed by Haria et al. [21]
was to create gestures that covered practically all aspects
of HCI, such as system functionality, application start, and
opening popular websites. We included a total of seven mo-
tions in their gesture detection system, six of which are static
gestures and one of which is dynamic. The average recognition
accuracy for static gestures is 94%. Their method transforms
the detected gesture into actions like opening websites and
running VLC Player and PowerPoint. In a presentation, the
dynamic gesture is used to slide between the slides.

III. METHODOLOGY

The developed gesture-based HCI system is robust and
intuitive to the new users. Every image frame taken by the
camera goes through the predefined steps to provide us with
the necessary output to run the system. Firstly, the captured
image from webcam goes through a hand landmark detector,
and 21 landmark points are detected. Secondly, the coordinates
given by the landmark detector are used as input for the custom
finger counter method. The output of this method will, in turn,
be used for the appropriate mode selection such as single
click, double click, and click & drag. Finally, the location
of the index fingertip needs to be extracted in order to locate
it relative to the fixed position of the camera feed. Based on
the location of the index fingertip the mouse pointer will be
controlled. The speed and sensitivity can be adjusted by the
user. The overall block diagram of the system is shown in
Fig. 1. The human computer interaction interface has been
represented visually in Fig. 2. Details of the execution stages
are described in the subsections below.

Input Video Stream

i

Detecting Hand Landmark Points

1

Counting Fingers for Mode Selection

v

[Tracking the Coordinate of Index Finger Tip

v
Extracting the Location of Index Finger Tip]

Relative to the 9 Fixed Areas of the Screen

v

Controlling Mouse Pointer based on the
Position of Index Finger Tip

1

[Simulating Different Modes such as Single

Click, Double Click, Click and Drag based
on the Number of Counted Fingers

Fig. 1. Overall System Execution Stages Presented in a Block Diagram

A. ’MediaPipe Hands’ Overview

Recognition of pattern and motion can assist enhance user
engagement across a wide range of technological disciplines
and platforms. It can, for example, establish the groundwork
for reading sign language and directing hand movements, as

Webcam tracking

/ user's hand motion

The user
moves his hand

The cursor moves
according to the
user’s hand motion

Fig. 2. Visualization of the Hand Gesture Controlled Human Computer
Interaction System

well as allowing augmented reality to overlay digital content
and information on top of the real world. Because hands
frequently constrict themselves or one other (for example,
finger/palm partial occlusion and handshaking), and because
they lack high dynamic range patterns, robust real-time hand
perception is a tough computer vision task.

’Hands’ by MediaPipe is a hand and finger tracking sys-
tem with excellent resolution. From a single image, machine
learning (ML) was utilized to derive 21 3D landmarks of a
hand. While previous state-of-the-art systems rely heavily on
sophisticated desktop environments for inference, this method
delivers real-time performance on a mobile phone and is even
scalable to many hands [12].

B. Machine Learning Pipeline

MediaPipe Hands use a deep learning workflow that consists
of a number of interconnected models: A palm detection model
that works on the entire picture returns an oriented hand
bounding box. A hand landmark generator that generates high-
fidelity 3D hand keypoints from the palm detector-cropped
image area.

Providing a correctly cropped hand image to the hand land-
mark model reduces the need for data augmentation and allows
the network to focus on accuracy in coordinate prediction.
Furthermore, crops may be created in the pipeline based on
hand landmarks recognized in the previous frame, with palm
detection only being employed to relocalize the hand when
the landmark model can no longer identify its presence.

The pipeline is constructed as a MediaPipe graph that
leverages the hand landmark module’s hand landmark tracking
subgraph and renders it with a specialized hand renderer
subgraph. Internally, the tracking subgraph of hand landmark
utilizes the same module’s hand landmark subgraph and the
palm detection module’s palm detection subgraph [12].

C. Models

1) Palm Detection Model: A single-shot detector model
was created to identify initial hand positions, and it was op-
timized for mobile real-time use. Hand detection is a difficult
problem since the model must function with a broad range of
hand shapes and sizes and identify occluded hands. Whereas
faces contain strong contrast patterns, such as around the eyes
and mouth, hands lack similar traits, making it more difficult

to consistently recognize them based on their visual features
alone. Providing extra contexts, such as arm, body, or human
characteristics instead helps with precise hand localization.

’MediaPipe Hands’ employs a variety of techniques to
overcome the aforementioned issues. First, a palm detector was
utilized instead of a hand detector since estimating bounding
boxes of rigid objects such as palms and fists is considerably
easier than detecting hands with articulated fingers. Further-
more, because palms usually are smaller objects, the non-
maximum suppression approach works well in instances where
two hands are involved, such as handshakes. Square border
boxes can also be used to depict palms. Finally, because of
the high scale variance, the focus loss during training was
reduced in order to accommodate a large number of anchors.
The various approaches resulted in an average accuracy of
95.7 percent in palm detection. With no decoder and a normal
cross-entropy loss, the baseline is just 86.22 percent.

2) Hand Landmark Model: Following palm detection, the
hand landmark model utilizes regression to achieve accurate
keypoint localization of the hand-knuckle coordinates inside
the identified hand areas, which is known as a direct coordi-
nate prediction. The model produces a consistent inner hand
positioning approximation also with partially visible hands
or self-occlusions. Around 30 thousand real world pictures
were manually labeled to provide ground truth data. A high-
quality artificial hand model was projected over a variety of
surroundings and converted to 3D coordinates. The 21 hand
landmark points’ positions are shown in Fig. 3.

0. WRIST

1. THUMB_CMC

2. THUMB_MCP

3. THUMB_IP

4. THUMB_TIP

5. INDEX_FINGER_MCP
6. INDEX_FINGER_PIP
7. INDEX_FINGER_DIP 18. PINKY_PIP
8. INDEX_FINGER_TIP 19. PINKY_ DIP

9. MIDDLE_FINGER_MCP 20. PINKY_TIP
10. MIDDLE_FINGER_PIP

11. MIDDLE_FINGER_DIP
12. MIDDLE_FINGER_TIP
13. RING_FINGER_MCP
14. RING _FINGER_PIP
15. RING _FINGER_DIP
16. RING _FINGER_TIP
17. PINKY_MCP

Fig. 3. Hand landmark points with their corresponding positions overlayed
on the hand image

D. Hand Landmark Detection Module

We created our custom hand landmark detector module
using the MediaPipe package using Python. The detection
confidence and tracking confidence of our landmark detector
module were both kept at 50% as our application requires
real-time tracking and detection. A higher confidence value
will make the detection more accurate by reducing the track-
ing capability, thus potentially hamper usability. We used
OpenCV [22] for real-time video capture and presentation
after processing. OpenCV is a major open-source framework
for computer vision, deep learning, and image analysis that is
now used in real-time processes [22].

The coordinate points of the detected hand landmark points
have been shown in Fig. 4a and the index fingertip position

has been highlighted in Fig. 4b. Additionally, we calculated
real-time Frames Per Second(fps) and displayed it in the demo
output. We achieved an average fps of 32, which is plenty for
any real-time usage requirements.

(b) Index Fingertip is Located and
Marked

(a) Landmark Detector Output

Fig. 4. Hand landmark detector module output

E. Finger Counter Module

We created our custom finger counter module that can count
the number the fingers up in any instance. This is necessary
because we want to use the number of fingers as an effective
gesture to simulate different useful actions. From Fig. 3, we
can see that the landmark points of the tip of the fingers are
4, 8, 12, 16 & 20. In case of all the fingers except for the
thumb, we will compare the Y-coordinate of the corresponding
fingertip with the Y-coordinate of the knuckle which sits 2
points below the fingertip. If the value of the fingertip is greater
than the value of the knuckle, then the finger is up and vice
versa. For the thumb, we compare the X-coordinate of the
fingertip with the X-coordinate of the knuckle which sits 1
point below the tip to make the decision whether the thumb
is open or closed. The output provided by the finger counter
module is shown in Fig. 5.

F. Human-Computer Interaction Mechanism

Our HCT system works by providing a mechanism that can
control mouse movements using hand gestures. We used hand
tracking and landmark detector modules to correctly figure
out the location of each fingertip along with the coordinate
value for all other landmark points. Our mouse movement
control works based on the position of the index fingertip in
the designated positions on the image frame captured by the
camera. We divided the image frame into 9 distinct areas each
of which represents a separate action to be carried out by the
mouse cursor, represented in Fig. 6.

The position of the index finger in these separate areas will
in turn drive the mouse cursor to move towards that direction.
We used the mouse package in Python to move the mouse
cursor and simulate clicking. A sensitivity multiplier(K) has
been multiplied with the incremental value of the mouse cursor
coordinates and the value will be user-configurable so that the
user can adjust the system’s speed and sensitivity according to
their own likings. The value of the mouse cursor coordinate
will shift by the increment of 10 pixels multiplied with K

(a) Count 1 (b) Count 2

(c) Count 3

(d) Count 4
Fig. 5. Finger Counter Module Output

Top Top
teft | P | Right
Mouse Y

Left Middle| Right

Mouse X
Bottom | g tiom | BOOM

Left Right

——
S

Fig. 6. Different Areas of the Screen Representing Different Actions

and the action based on the position of index finger has been
presented in Table I.

The custom finger counter module will aid in carrying
out the clicking actions and click and drag functionalities.
The finger counter is very accurate and reliable. Moreover,
it does not add any additional computational complexity to
the existing landmark detector module. Because it works
based on the data given by the landmark module. So, we
are able to perform these extra actions without losing any
performance, contrary to the methods that employ separate
gesture recognition models for detecting distinct gestures. The
actions and their respective finger counts have been described

TABLE I
ACTION BASED ON THE POSITION OF THE INDEX FINGER IN THE IMAGE
FRAME
Position of Index Finger | Mouse X | Mouse Y
Top Left —10xK | —10%x K
Top 0x K —10* K
Top Right +10x K | —10*x K
Left —10x K 0x K
Middle 0x* K 0x*x K
Right +10 % K 0x*x K
Bottom Left —10x K | +10x K
Bottom 0x K +10x K
Bottom Right +10x K | +10*% K

TABLE II
REQUIRED ACTION BASED ON FINGER COUNT

Action
Single Left Click
Double Left Click

Right Click
Click and Drag

Gesture
Two Fingers Count
Three Fingers Count
Four Fingers Count
Five Fingers Count

in Table II.

IV. EXPERIMENTAL RESULTS AND COMPARISON

We constructed the gesture-based HCI system and employed
it in a windows machine. Since our underlying mechanism is
cross-platform, it will work on other operating systems just as
easily and reliably. A synthetic demonstration of our system’s
working procedure has been presented in Fig. 7. From the
perspective of initial adopter of our system, this offers an
intuitive approach of HCI mechanism that is easy to pick up
for anyone who is using it for the first time.

The fps we get varies between 11 and 85. But the average
fps we got in a recorded iteration of 811 was 32.05, which
is sufficient for our use case. A line chart has been presented
in Fig. 8, showing the time series representation of fps count
over a certain number of instances. The necessary metrics of
the fps data has been presented in Table III.

TABLE III
NECESSARY METRICS OF THE COLLECTED FPS DATA
Metrics Value
Counted Instances 811
Average 32.05
Median 31.59
Mode 35.80
Min 11.66
Max 85.63

The hardware spec in which the training and evaluation has
been done is shown below:

¢ GPU: 1xGeForce 930MX, Base Frequency 952 MHz, 384
CUDA cores, 24 TMUs, 16 ROPs and Memory Capacity
2GB

¢ CPU: Intel Core i5-8250U, Number of Cores 4, Number
of Threads 8, Base Frequency 1.60 GHz, Max Turbo
Frequency 3.40 GHz, 6 MB Smart Cache, Bus Speed
4 GT/s, TDP 15 W

¢ RAM: 8.0 GB Available

o Disk: 256 GB Available

Our hand gesture based HCI system is based on the state
of art technologies and compare fairly well with the existing
methods of similar application found from other research
works. We can see that there are a variety of equipment used
in these works, each with different methodology and system
model. Our work varies from the other works in the method,
number of gesture and the used equipment scenarios. The
novelty of our approach lies in the simplicity in the usability
standpoint along with the superior performance in a weak

piece of hardware. The computational complexity has been
minimized by the exclusion of cascaded heavy deep learning
models. Instead we used simple and lightweight model which
is accurate and reliable at the same time.

V. CONCLUSION AND FUTURE WORKS

Our motivation for making a touchless HCI system that will
be as reliable as a touch-based or physical hardware-based HCI
system was to provide a low-cost alternative for the devices
that require a touchless input mechanism. The solution we
provided will be particularly useful for the safe usages of the
end devices that reside in public places such as transit stations.
We believe that the widespread adoption of touchless HCI
systems will help us to minimize the spread of diseases such
as Covid-19. Our method of system modeling and interfacing
relies on the core aim of making the system as lightweight as
possible, also retaining the same or more additional features
that a traditional heavy model can provide. Our system is fast,
reliable and can easily be implemented in all kinds of operating
system. All the data processing is done internally and used in
real time. No video is recorded or saved from the webcam,
thus proving Superior privacy for the application in sensitive
places such as ATM booth or Hospitals. The expansion of
this technology in the medical research, augmented reality and
gaming industry might be a future study endeavor.

REFERENCES

[1] Y. Fang, K. Wang, J. Cheng, and H. Lu, “A real-time hand gesture recog-
nition method,” in 2007 IEEE International Conference on Multimedia
and Expo. 1EEE, 2007, pp. 995-998.

[2] M. Oudah, A. Al-Naji, and J. Chahl, “Hand gesture recognition based
on computer vision: a review of techniques,” journal of Imaging, vol. 6,
no. 8, p. 73, 2020.

[3] M. Al-Hammadi, G. Muhammad, W. Abdul, M. Alsulaiman, M. A.
Bencherif, T. S. Alrayes, H. Mathkour, and M. A. Mekhtiche, “Deep
learning-based approach for sign language gesture recognition with
efficient hand gesture representation,” IEEE Access, vol. 8, pp. 192 527—
192542, 2020.

[4] A. Vaitkevi¢ius, M. Taroza, T. Blazauskas, R. Damasevicius,
R. Maskelitinas, and M. WozZniak, “Recognition of american sign lan-
guage gestures in a virtual reality using leap motion,” Applied Sciences,
vol. 9, no. 3, p. 445, 2019.

[5] J. Zemgulys, V. Raudonis, R. Maskelitinas, and R. Damasevicius,
“Recognition of basketball referee signals from real-time videos,” Jour-
nal of Ambient Intelligence and Humanized Computing, vol. 11, no. 3,
pp. 979-991, 2020.

[6] F. Afza, M. A. Khan, M. Sharif, S. Kadry, G. Manogaran, T. Saba,
I. Ashraf, and R. DamaseviCius, “A framework of human action recogni-
tion using length control features fusion and weighted entropy-variances
based feature selection,” Image and Vision Computing, vol. 106, p.
104090, 2021.

[7]1 A. Nikolaidis and I. Pitas, “Facial feature extraction and pose determi-
nation,” Pattern Recognition, vol. 33, no. 11, pp. 1783-1791, 2000.

[8] A. Kulikajevas, R. Maskeliunas, and R. Damasevicius, ‘“Detection of
sitting posture using hierarchical image composition and deep learning,”
PeerJ computer science, vol. 7, p. e442, 2021.

[91 K. Ryselis, T. Petkus, T. Blazauskas, R. Maskelilinas, and

R. Damasevicius, “Multiple kinect based system to monitor and

analyze key performance indicators of physical training,” Human-

Centric Computing and Information Sciences, vol. 10, no. 1, pp. 1-22,

2020.

P. N. Huu, Q. T. Minh ef al, “An ann-based gesture recognition

algorithm for smart-home applications,” KSII Transactions on Internet

and Information Systems (TIIS), vol. 14, no. 5, pp. 1967-1983, 2020.

[10]

(11]

[12]

[13]

- [N s
N
5 g L N
R)]
¥ g ‘
(a) Top Left (b) Top (c) Top Right
N i NN
DI . L
- | | | |
(d) Left (e) Middle (f) Right
IR N N
N N k
NS ' k A
—! - ¥ -] o
(g) Bottom Left (h) Bottom (i) Bottom Right

Fig. 7. Synthetic Demonstration of our System’s Working Procedure

FPS Count

o o e o e e o e o e o o e o o e e
MO ANWMOASTSMNOMUOODNWNE AT OMOOONLWL O
HEH A NN OO TS TN N O WO e N~NNN

Each Iteration

Fig. 8. FPS Count vs Number of Iteration

Z.Ren, J. Yuan, J. Meng, and Z. Zhang, “Robust part-based hand gesture
recognition using kinect sensor,” IEEE transactions on multimedia,
vol. 15, no. 5, pp. 1110-1120, 2013.

F. Zhang, V. Bazarevsky, A. Vakunov, A. Tkachenka, G. Sung, C.-L.
Chang, and M. Grundmann, “Mediapipe hands: On-device real-time
hand tracking,” arXiv preprint arXiv:2006.10214, 2020.

R. Agrawal and N. Gupta, “Real time hand gesture recognition for hu-
man computer interaction,” in 2016 IEEE 6th International Conference

[14]

[15]

[16]

(17]

(18]

[19]

[20]

[21]

(22]

on Advanced Computing (IACC). 1EEE, 2016, pp. 470-475.

P. Xu, “A real-time hand gesture recognition and human-computer
interaction system,” arXiv preprint arXiv:1704.07296, 2017.

Z.-h. Chen, J.-T. Kim, J. Liang, J. Zhang, and Y.-B. Yuan, “Real-
time hand gesture recognition using finger segmentation,” The Scientific
World Journal, vol. 2014, 2014.

Y. Yin, C. McCarthy, and D. Rezazadegan, “Real-time 3d hand-object
pose estimation for mobile devices,” in 2021 IEEE International Con-
ference on Image Processing (ICIP), 2021, pp. 3288-3292.

S. Patidar and D. C. Satsangi, “Hand segmentation and tracking
technique using color models,” International Journal of Software &
Hardware Research in Engineering, vol. 1, no. 2, pp. 18-22, 2013.

G. Sziladi, T. Ujbanyi, J. Katona, and A. Kovari, “The analysis of hand
gesture based cursor position control during solve an it related task,” in
2017 8th IEEE International Conference on Cognitive Infocommunica-
tions (CoglnfoCom). 1EEE, 2017, pp. 000413-000418.

A. Mujahid, M. J. Awan, A. Yasin, M. A. Mohammed, R. Damaseviius,
R. Maskelitinas, and K. H. Abdulkareem, “Real-time hand gesture
recognition based on deep learning yolov3 model,” Applied Sciences,
vol. 11, no. 9, p. 4164, 2021.

S. S. Rautaray and A. Agrawal, “Real time multiple hand gesture recog-
nition system for human computer interaction,” International Journal of
Intelligent Systems and Applications, vol. 4, no. 5, pp. 56-64, 2012.
A. Haria, A. Subramanian, N. Asokkumar, S. Poddar, and J. S. Nayak,
“Hand gesture recognition for human computer interaction,” Procedia
computer science, vol. 115, pp. 367-374, 2017.

G. Bradski and A. Kaehler, Learning OpenCV: Computer vision with
the OpenCV library. * O’Reilly Media, Inc.”, 2008.

